Move with Math in May: Four #movingmath Lessons

WELCOME!

This is a special nearing-the-end-of-the-school-year event featuring four math-and-movement lesson plans to chose from. The goal? An opportunity to try out whole-body math in a low-key way to get a sense of what it’s all about. Here’s how to play:

A LITTLE OR A LOT:
The lessons are presented in full but you are free to do as little or as much of the plan as you like. The most important thing is that the moving is the math as much as anything else so just getting your learners moving in a mathematical setting is a GREAT start.

SHARE YOUR EXPERIENCE BY MAY 31, 2017 to enter the random drawing to win a copy of Math on the Move: Engaging Students in Whole Body Learning. Share your experience via blog post or video on Twitter or Facebook with #movingmath and, just to make sure, share the link with me

Below you’ll find overviews of and links to each lesson. If you have any questions, feel free to get in touch on Twitter or via the contact form. Most importantly, HAVE FUN!!

Header Proving Center 1 FINAL

In this activity, children work collaboratively in teams of three to five (four being an optimal number) to determine the center of a taped ladder-like structure on the floor. Although teams may solve the initial challenge rather quickly, the core mathematical experience is in using space and their bodies as tools for making sense of the challenge as they work to prove that they have found the right location. GO TO THE LESSON


Header Rope Polygons 2 FINAL

In this activity, created in collaboration with Max Ray-Riek from the Math Forum at NCTM, students work collaboratively in teams of three to five to investigate and construct polygons with their bodies and a twelve-foot knotted rope. Although this lesson attends to regular polygons, the activity has been extended to address learning goals for middle and high school students.  GO TO THE LESSON


Header Clap Hands 3 FINAL

Clapping games are a part of the natural mathematics of childhood; they are also filled with pattern, spatial reasoning, and rhythm.  This activity, which can be different every time you play, was developed by John Golden (@mathhombre) with a class of preservice teachers. GO TO THE LESSON


 

Header MiYFeet 4 FINAL

Have you ever wondered what Math in Your Feet would look and sound like in your classroom? Here is a game-based version of this work, developed in collaboration with wellness teacher Deb Torrance (@Mrs_Torrance), as a way for you to see what math and dance can look like when both are happening at the same time. GO TO THE LESSON.


I’m looking forward to seeing and hearing how things go!


Malke Rosenfeld is a dance teaching artist, author, editor, math explorer, and presenter whose interests focus on the learning that happens at the intersection of math and the moving body. She delights in creating rich environments in which children and adults can explore, make, play, and talk math based on their own questions and inclinations.

 

 

Learning Math by Ear: The Role of Language in a Moving Classroom

img_3001

At first glance, this article about the value of reading aloud to older kids would not seem to connect to math learning. But, to me it does.  Here’s the piece that really stood out:

“The first reason to read aloud to older kids is to consider the fact that a child’s reading level doesn’t catch up to his listening level until about the eighth grade,” said Trelease [a Boston-based journalist, who turned his passion for reading aloud to his children into The Read-Aloud Handbook in 1979], referring to a 1984 study performed by Dr. Thomas G. Sticht showing that kids can understand books that are too hard to decode themselves if they are read aloud. “You have to hear it before you can speak it, and you have to speak it before you can read it. Reading at this level happens through the ear.”

Did you catch that? “You have to hear it before you can speak it, and you have to speak it before you can read it.”

I made a similar point while working with teachers and teaching artists in Minnesota in 2013 when participants noticed how the math language was woven naturally and seamlessly into our dance work. This vocabulary development, I said, was initially an attempt to help kids pay closer attention to the details of what they were doing while they created their dance patterns. I noticed that they became much better creators when they had the right words to help them identify their movement choices.

recent brain study focused on how the motor cortex contributes to language comprehension:
“Comprehension of a word’s meaning involves not only the ‘classic’ language brain centres but also the cortical regions responsible for the control of body muscles, such as hand movements.”
To me this study explains part of why a “moving math” approach that includes a focus on math language used in context can open up new pathways for our learners [bolding emphasis mine]:

“An alternative is offered by an embodied or distributed view suggesting that the brain areas encoding the meaning of a word include both the areas specialised for representing linguistic information, such as the word’s acoustic form, but also those brain areas that are responsible for the control of the corresponding perception or action. On this account, in order to fully comprehend the meaning of the word ‘throw’, the brain needs to activate the cortical areas related to hand movement control. The representation of the word’s meaning is, therefore, ‘distributed’ across several brain areas, some of which reflect experiential or physical aspects of its meaning.”

 My take away from the study overview is this:

  1. Our whole bodies are just that: whole systems working in an fascinating and astoundingly connected ways.
  2. “Knowing” something, especially the ideas and concepts on the action side of math (transform, rotate, reflect, compose,  sequence, combine, etc) is strengthened by the partnership between mathematical language and physical experience.

In Math in Your Feet we start by moving to get a sense of the new (non-verbal) movement vocabulary in our bodies. At the same time we say together, as a group and out loud, the words that best match our movement. Sometimes we also pay attention to the words’  written forms on the board so all three modalities of the idea are clear to us.  When learners are more confident with their dancing they are asked to observe others’ work and choose the the specific  words that describe the attributes/properties of the moving patterns. There are over 40 video examples of this in action in Math on the Move.

IMG_5139

In addition to being able to parse our patterns, we use tons of other math terminology while we choreograph in conversations with our teammates and in whole group discussions.  This approach allows learners to fully grasp the real meaning and application of these ideas which, ultimately, allows them to write and talk confidently about their experiences making math and dance at the same time. Teachers consistently notice an increase of ‘math talk’ in their classrooms when children get up to explore math ideas with their whole bodies. As in, “I couldn’t believe how much math vocabulary they were using!”

BIG PICTURE #1

Math is a language but it’s not just about terminology, it’s about what those words MEAN.  To do this, learners need to play with mathematical ideas, notice and talk about patterns and structure, sort and compare, and share reasoning about and understanding of mathematical relationships.

BIG PICTURE #2

As such, language, in partnership with the body is our tool for thinking mathematically when we are up out of our seats and moving during math time.  Ideally, this language is facilitated by an adult through conversation, play and exploration, all before bringing it to the page to explore the ideas in a different modes and contexts.


Malke Rosenfeld is a dance teaching artist, author, editor, math explorer, and presenter whose interests focus on the learning that happens at the intersection of math and the moving body. She delights in creating rich environments in which children and adults can explore, make, play, and talk math based on their own questions and inclinations. Join Malke and other educators on Facebook as we build a growing community of practice around whole-body math learning.

5 Articles that Answer: “How can they learn math if they’re moving?”

Or, more succinctly, “How is this math?” There is an entire chapter in Math on the Move that answers this question in great detail, but here are some research-based articles, as well as bonus perspectives from mathematicians, that I hope will provide a strong rationale for you when explaining to others the benefits of whole-body math learning.

rb-5a
1. A recent study in Denmark has concluded “Math is learned best when children move…and it  helps to use the whole body.”

Participation in math lessons focusing on integrating gross motor activity can positively contribute to mathematical achievements in preadolescent children. In normal math performers, gross motor enrichment led to larger improvements than fine motor enrichment and conventional teaching. Across all children gross motor enrichment resulted in greater mathematical achievement compared to fine motor enrichment. From a practical perspective, teachers and related personnel should consider integrating gross motor activity in learning activities relevant to the academic curriculum as a promising way to engage children and improve academic achievement.

This is great news but we need to keep our eye on what it means to do this in a meaningful way in the classroom!

2. Spatial Reasoning IS mathematics: “It is almost as if they are one and the same thing.”

Even though spatial reasoning includes the body (see information in #3, below), there has been little research on whole-body-based spatial reasoning. Nevertheless, spatial reasoning is a foundational skill for learning math and Math on the Move is, in part, about illustrating in great detail how we can harness and develop whole-body spatial reasoning during math time.

“The relation between spatial ability and mathematics is so well established that it no longer makes sense to ask whether they are related” (p. 206). Researchers have underlined that the link between spatial reasoning and math is so strong that it is “almost as if they are one and the same thing” (Dehaene, 1997, p. 125). Reflecting on the strength of this relationship, others have noted that “spatial instruction will have a two-for-one effect” that yields benefits in mathematics as well as the spatial domain…”

 3. Paying Attention to Spatial Reasoning

A succinct document targeted to educators that explains the importance of spatial reasoning in mathematics and what it looks like when it’s integrated into math class in grades K-8.

Students need to be explicitly taught and given opportunities to practice using executive functions to organize, prioritize, compare, contrast, connect to prior knowledge, give new examples of a concept, participate in open-ended discussions, synthesize new learning into concise summaries, and symbolize new learning into new mental constructs, such as through the arts or writing across the curriculum.

4. Developing Executive Function

Math is more than facts and being in control of your own body while focusing on a specific body-based task is an opportunity for students to develop Executive Function as well as apply and deepen their learning.

Creative opportunities — the arts, debate, general P.E., collaborative work, and inquiry — are sacrificed at the altar of more predigested facts to be passively memorized. These students have fewer opportunities to discover the connections between isolated facts and to build neural networks of concepts that are needed to transfer learning to applications beyond the contexts in which the information is learned and practiced … When you provide students with opportunities to apply learning, especially through authentic, personally meaningful activities with formative assessments and corrective feedback throughout a unit, facts move from rote memory to become consolidated into related memory bank, instead of being pruned away from disuse.

5. Children think and learn through their bodies

We conclude that children think and learn through their bodies. Our study suggests to educators that conventional images of knowledge as being static and abstract in nature need to be rethought so that it not only takes into account verbal and written languages and text but also recognizes the necessary ways in which children’s knowledge is embodied in and expressed through their bodies.

BONUS: Mathematicians can recognize the whole-body activity as “doing math”

“Its [the second part of[Math on the Move] that is the most mathematical, from my perspective as a pure mathematician. The dance moves within the tiny square space are an abstract mathematical idea that is explored in a mathematical way. We ask how the steps are the same or different from each other, identifying various properties that distinguish them. We investigate how these new objects can be combined and ordered and transformed. We try out terminology and notation to make our investigations more precise and to communicate both current state and how we got there. These are all the things we pure mathematicians do with all our functions, graphs, groups, spaces, rings and categories. The similarity of this to pure mathematical investigation is striking.”

 David Butler, University of Adelaide, Australia [Read full review]

“The movement activities described [by Malke] naturally link to the notions of transformational geometry and the subtle questions of sameness and difference that are explored. Enabling people to find the links between that physical understanding and the mathematical abstractions is a wonderful way to make mathematics open up. Overall this is a wonderful book on the power and importance of mathematical thinking to explore all sorts of surprising topics, and conversely the importance of physical movement and dance to explore mathematics.”

—Edmund Harriss, Clinical Assistant Professor, Department of Mathematical Sciences, University of Arkansas [Read full review]


Malke Rosenfeld is a dance teaching artist, author, editor, math explorer, and presenter whose interests focus on the learning that happens at the intersection of math and the moving body. She delights in creating rich environments in which children and adults can explore, make, play, and talk math based on their own questions and inclinations. Join Malke and other educators on Facebook as we build a growing community of practice around whole-body math learning.

New Year, New Tools for Making Sense of Math!

happy-hoppy-new-year

Happy 2017!! This year harness the original “thinking tool” to help your learners make sense of math! What is this tool, you ask? Why, your students’ own bodies and creative spirits of course!

Math on the Move: Engaging Students in Whole Body Learning is now available from Heinemann. Included in the book are specific, actionable ideas for including your students’ moving bodies in the math you are already doing in your classroom!

Here is your first tip in the New Year for a simple first step in bringing Math in Your Feet and other #movingmath activities into your classroom in a low key way.  All the best to you for a new year filled with enthusiastic math making!

new-year-new-tools-tip-1

You can download the Movement Variables from the Classroom Materials page.

Interested in having First Steps show up in your inbox in a semi-regular and non-irritating fashion? Join my mailing list! 

Will you tell us about your #movingmath adventures with us? I’d love to hear your stories. Share with us on Twitter or at the book group on Facebook.


Malke Rosenfeld is a dance teaching artist, author, editor, math explorer, and presenter whose interests focus on the learning that happens at the intersection of math and the moving body. She delights in creating rich environments in which children and adults can explore, make, play, and talk math based on their own questions and inclinations. Her new book Math on the Move: Engaging Students in Whole Body Learning was recently published by Heinemann (2016). Join Malke and other educators on Facebook as we build a growing community of practice around whole-body math learning.

A Framework for Whole-Body Math Teaching & Learning

gallery-5

What is whole-body math learning? How can we be doing math if it’s not written down? What are our expectations for student work and learning math out of their seats?

My focus in Math on the Move is on how we can harness our students’ inherent “body knowledge” to help them develop new understanding and facility with mathematical ideas that often seem remote and impenetrable as presented in their textbooks. This is not to say that math is this way, but for many people, myself included, the symbolic side of math creates a barrier, at least initially, to understanding. This is why approaches like Numberless Word Problems  (“They just add all the numbers. It doesn’t matter what the problem says.”) and Notice and Wonder  were created: to help kids make sense of math.

The phrase “body knowledge” was coined by the late Seymour Papert, a protégée of Jean Piaget. In the 1980s Papert’s work at MIT focused on developing “objects to think with,” including the Logo computer programming system for children. Here are a few images of children engaged in self-initiated, body-based exploration of a math idea as they investigate the spatial aspects and physical structure of their environment.

Papert’s intention was to harness a child’s own lived experiences and natural, self-intiated explorations in the world as a way to investigate more formal mathematics via the programming of a little metal object called the “Turtle.” Much of what we do in Math in Your Feet is similar to what children do with the LOGO turtle – working independently or in teams within a specific system/constraint, investigating and creating units of commands or patterns in a spatial and geometric language and, along the way, fine tuning our intentions and results.

Similar to Papert’s work, Math on the Move is about math, but it is also about the nature of learning by actually making something and the need to develop strong pedagogy for what might be seen as a non-traditional approach. For me this means a meaningful  interdisciplinary, movement-based approach beyond the preschool years. In the first chapter I provide an overview of what meaningful whole-body math learning looks like in my own and others’ moving math classrooms. I clarify the body’s role as a thinking tool and its use within a purposeful making and learning context. I also provide a conceptual framework and pedagogical base for any educator wishing to do similar work with his/her own students at body- or moving-scale.

Because our encounters with math have been, for the most part, visual and on the page, a whole-body approach to learning math may feel foreign to both teachers and students. To quell the qualms of others who may want to try this approach in their own classroom I have spent years working to define the pedagogical elements that must be present so children can think deeply and engage in mathematical sense making with their whole bodies.  The criteria (which are explained in more detail in the book) include:

  • The lesson explores one or more mathematical ideas off the page and out of the chair.
  • The math-and-movement lesson provides a structure in which students make choices, converse, collaborate, and reflect verbally on what they did and what they noticed while they were engaged in whole-body-based activity.
  • The body activity is focused on mathematical sense making, and  often through efforts to solve a challenge of some kind, not on using the body to illustrate a math ideas as it is typically represented on the page.
  • The teacher is not the expert but acts as the facilitator of the learners’ activity by setting expectations for controlled, intentional movement, and monitoring lesson pacing and classroom discussion.
  • Students reflect on the activity as both doers and observers, learning from their own experiences and the work and thinking of their peers.
  • In partnership with the change of scale, the math-and-movement activity should be explicitly connected with the same math idea as it is experienced in other contexts, scales, or modes. 

    Just like any organized lesson, moving math needs a frame of expectations and learning goals. It may look and feel different from the norm, especially because its kinetic nature, but as long as there is an underlying structure and intent, it’s worth exploring to see what the possibilities might be.  You might be very surprised at how enthusiastically children embrace the opportunity to harness their whole selves, body and mind for a mathematical investigation!


    Malke Rosenfeld is a dance teaching artist, author, math explorer, and presenter whose interests focus on the learning that happens at the intersection of math and the moving body. She delights in creating rich environments in which children and adults can explore, make, play, and talk math based on their own questions and inclinations. Her new book Math on the Move: Engaging Students in Whole Body Learning was recently published by Heinemann (2016). Join Malke and other educators on Facebook as we build a growing community of practice around whole-body math learning.

Learning without a Body

Lunch time at my daughter’s small school means children are free to move around both inside and outside of the school within boundaries determined by their grade level. Often, lunch time is not just for eating (as evidenced by half-eaten sandwiches in the lunch box at the end of the day).  Lunch is for making up skits, finding interesting properties in the rocks you are pounding, for having arguments and making up, for exploring the narrow (but long) strip of trees that line one side of the school’s property, called ‘the woods’, and for creating clubs.  At a school with a no-exclusion rule, a club can be pretty much any combination of kids at any one time.

One day, when my daughter was in third grade, she told me her club had made a fort in the woods. At first glance it looked rather like a wall.  A very well constructed, sturdy wall, a wall built with a lot of thought and insight. There is a base of bricks and concrete and then a layer of sticks. There was also a latch (a piece of wire) which is lifted by the “door” (a stick), “Although we don’t usually go in this way because it’s not sturdy,” she told me, “we usually just go in over the low wall.”

Hearing about and seeing this fort I immediately thought about the article Ophelia’s Fort by fourth grade teacher and artist David Rufo which I edited for the Teaching Artist Journal’s online writing community ALT/space. In it he writes:

“During our conversations it became evident that Ophelia was focused on making for herself a “special place” rather than a special structure with four walls, a roof, and a door. As David Sobel emphasized in his book Children’s Special Places: Exploring the Role of Forts, Dens, and Bush Houses in Middle Childhood: ‘Through making special places, children are experiencing themselves as shapers and makers of small worlds. This experience contributes to making them active shapers of the world in their adult lives.'”

 In sharing this story about my daughter’s lunchtime adventures, I am aware that it is not about math learning, per se, but it does relate to why I wrote a book about the whole-body math learning. In past writings I have focused very closely in on the specifics of the Math in Your Feet program; the new book was a chance for me to step back and look at the broader issues involved in making math and dance at the same time.

One of the ideas that came into view as I zoomed out during the book writing is the necessity of agency in learning. It is clear that issues of learner agency begin with the body.  And, when thinking about using dance or movement as a partner in learning we must start by identifying how the body has historically been employed during school hours.  That is to say, how the body has not been employed (bolding emphasis mine):

“The embodied experience of traditional schooling is often, as educational philosopher John Dewey might suggest, an anaesthetic experience, devoid of any heightened sensory experience or perception. In school, our bodies are still, serving primarily a utilitarian function.  We learn to from an early age not to squirm or leave our desk chairs in classrooms. We learn to sit up straight, raise our hands to be called upon, or walk single file to lunch.  By the time we reach high school our bodies are often reserved for gym class…or for moving from one class to another. In a sense, we educate from the neck up, leaving the rest of the body to act largely as physical support rather than as actively involved in our quest for knowledge, thinking, and understanding … implicated in this analysis is the importance of agency in relation to activity. Providing curricular opportunities that are experience-based, that encourage the use of the body and engage the senses in learning could create a different kind of [structure] for schooling if learners are encouraged to explore connections between learning, self and the broader social and cultural frameworks of meaning in which they are situated.” 

Source: Powell, K. The apprenticeship of embodied knowledge in a taiko drumming ensemble. In L. Bresler (Ed.), Knowing bodies, moving minds: Embodied knowledge in education (pp. 183-195). Dordrecht, The Netherlands: Klewar Press.

The body is not simply a vehicle toward realizing the perceived pinnacle of abstracted knowledge housed in the mind.  The body is where learning originates. Living in a body is also the way children learn personal agency as they make decisions about how their bodies will move and act and how that power can influence and shape their world. And, in the process, learning that there are obvious consequences and responses in relation to their actions. This is literally and viscerally democracy in action.

Perhaps most importantly, despite the incredible change of pace and screen-focused activity in modern life, children still have brains that learn best by moving and pulling sensory input in through all parts of the body.  Hundreds of years of thoughtful analysis, research, and observation of children learning and growing has shown this to be true and yet the body is still being marginalized in favor of  “knowledge” as something gold and shiny to be won and placed on a high shelf for viewing, far removed from any experience and personal understanding.

What is a body without agency?  What is learning without a body? Thinking about these questions is the important first step in understanding the inherent worth of children using their bodies to make sense of mathematics.

This is slightly altered reposting of the 2013 version of the same title on the authors former blog The Map is Not the Territory.


Malke Rosenfeld is a dance teaching artist, author, and presenter whose interests focus on the learning that happens at the intersection of math and the moving body. She delights in creating rich environments in which children and adults can explore, make, play, and talk math based on their own questions and inclinations. Her new book is titled: Math on the Move: Engaging Students in Whole Body Learning (Heinemann 2016)

A few thoughts on the difference between memorizing and learning

cropped-img_7144.jpg
Kids making sense of math.

Math on the Move: Engaging Students in Whole Body Learning is organized around three basic ideas:

  1. The body in math learning is best conceived as a thinking tool
  2. Math learning is more than memorization
  3. Amazing learning can happen when the body and math come together in both dance and non-dance settings.

It’s point #2 I’d like to focus on in this post.

A couple years ago Ben Orlin had a fantastic article in the Atlantic titled When Memorization Gets in the Way of Learning. In it, he says:

“What separates memorization from learning is a sense of meaning. When you memorize a fact, it’s arbitrary, interchangeable–it makes no difference to you whether sine of π/2 is one, zero, or a million. But when you learn a fact, it’s bound to others by a web of logic. It could be no other way.”

Most often, the role of the moving body in the classroom, during math time, is that of mnemonic device. Here are some examples of what that might look like:

  • using arms to create symbols for operations, like +, – , and = (focusing on creating representations of the symbols, not expressing their meaning)
  • using hand movements in a song about memorizing a procedure
  • bouncing on an exercise ball while reciting multiplication facts
  • singing a song with an accompanying dance about finding the area of a circle, using movements that bear no relationship to the properties of a circle
  • exploring a math concept such as high versus low in isolation, removed from a narrative context (such as retelling a story) or the larger context of dance learning and making
  • having multiple students become the sides of a triangle by lying on the floor

None of these activities are inherently harmful, some of them may be helpful, and yet, none are at all focused on making sense of mathematical ideas.

In the book I endeavor to explain why we should use the whole, moving body in math learning. I do this by pulling from both research and practice to build a framework for meaningful, body-based math learning. When children harness their innate body knowledge for mathematical sense making, they also harness their whole selves in the pursuit of new ideas and understanding. They develop, communicate, and reason about mathematical ideas both nonverbally and verbally.

Children can make good sense of the world when they get a chance to interact with it, and children are also well able to reason with and about things they observe and do. But they can do this only if they get the chance to do, make, investigate, converse, wonder, build, express, and reflect. Without these kinds of interactions they might still be able to memorize math facts, but memorization would not necessarily mean they would know, for themselves, that something was true.

Ben Orlin said it best:

“Memorization is a frontage road: It runs parallel to the best parts of learning, never intersecting. It’s a detour around all the action, a way of knowing without learning, of answering without understanding.”

I’m SO looking forward to the book being out in another month or so we can grow the practice of meaningful whole-body math learning and teaching together. In the mean time, please feel free to join our book group on Facebook, comprised of educators who want to help their students make sense of math using the original “object to think with” — the whole, moving body.


Malke Rosenfeld delights in creating rich environments in which children and their adults can explore, make, play, and talk math based on their own questions and inclinations. Her upcoming book, Math on the Move: Engaging Students in Whole Body Learning, will be published by Heinemann in October 2016.

TEDx Talk: Jump into math!

My upcoming book reminds us that the body is best positioned as a thinking tool, that math is about more than memorization, and that amazing things can happen when the body and math come together in both dance and non-dance settings.

I gave a TEDx talk in 2013 (before I had even thought to write a book!) which gives a great overview of what Math in Your Feet and whole-body math learning is all about. Math on the Move: Engaging Students in Whole Body Learning will be available in late October and is ready for pre-order.


Malke Rosenfeld delights in creating rich environments in which children and their adults can explore, make, play, and talk math based on their own questions and inclinations. Her upcoming book, Math on the Move: Engaging Students in Whole Body Learning, will be published by Heinemann in Fall 2016.

Math on the Move now ready for pre-order!

cover

“We want math to make sense to our students, and the moving body is a wonderful partner toward that goal.”   —Malke Rosenfeld

Kids love to move. But how do we harness all that kinetic energy effectively for math learning? In Math on the Move, Malke Rosenfeld (creator of Math in Your Feet) shows how pairing math concepts and whole body movement creates opportunities for students to make sense of math in entirely new ways. Malke shares her experience creating dynamic learning environments by:

  • exploring the use of the body as a thinking tool
  • highlighting mathematical ideas that are usefully explored with a moving body
  • providing a range of entry points for learning to facilitate a moving math classroom.

The book is filled with classroom-tested activities and detailed coaching tips, and supported with extensive online video clips.

Read more and/or pre-order by going to the Heinemann site

Join a growing community of practice around whole-body math learning on Facebook!

rb 10a.jpg


Malke Rosenfeld delights in creating rich environments in which children and their adults can explore, make, play, and talk math based on their own questions and inclinations. Her upcoming book, Math on the Move: Engaging Students in Whole Body Learning, will be published by Heinemann in Fall 2016.

What it means when we say “learning through play”

Whole-body math learning should feel playful to the learner. This is a lovely short video about what it means when we say “learning through play.” Instead of building and using the “art machines” shown in this video, children can use their whole bodies as “objects to think with” in similar ways as they work to design, build, explore, and make original and mathematical foot-based dance patterns.

 


Malke Rosenfeld delights in creating rich environments in which children and their adults can explore, make, play, and talk math based on their own questions and inclinations. Her upcoming book, Math on the Move: Engaging Students in Whole Body Learning, will be published by Heinemann in Fall 2016.